

Feature:

- Saving space with the shortest length behind panel.
- 0.4" LED display showing SV/PV at a glance.
- Front panel protection with NEMA-4/IP65. (The attached gasket is required.)
- Higher sampling (100 ms) result in better control performance.
- Protect the control object from thermal shock (rapid temperature change) with the excellent ramp rate facility.
- Protect the heating element from excess current during initial power-up.

Specification

Thermocouple (T/C): J, K, T, E, B, R, S, N, C (ITS-90)

Control Output

Alarm Output

General Specifications

Digital
Communication
Pt100: Excitation 180uA. 2 or 3 wire connection (ITS-90 $=0.00385$)

Voltage: -60 mVdc to 60 mVdc or -10 Vdc to 10 Vdc
Current: 0 mA to 24 mA
Sampling Rate

Control Mode
Derivative Time: 0~1000 sec
Hysteresis: 0.0~999.9 or 0~9999
Cycle Time: 1~60 sec
Relay Contact Output: 5A/240 VAC (Rasistive load)
Pulsed Voltage Output: DC 0/24V (Rasistive load 250 Min.)
Relay Contact Output: 5A/240 VAC (Rasistive load)
Power supply: Universal 90 ~ 265 VAC $50 / 60 \mathrm{~Hz}$
Power consumption: 4VA Max.
Aux. 24 Vdc power output: 25 mA (max.)
Common mode rejection ratio: $>80 \mathrm{~dB}$
Operating temperature: 0 to $50^{\circ} \mathrm{C}$
Humidity: 0 to 85% RH (Non-Condense Condition)
Electromagnetic compatibility (EMC): En 50081-2, En 50082-2
Housing material: ABS plastic. UL 94V0
Weight: $100 \mathrm{~g}(3.5 \mathrm{Oz})$
EIA RS-485 with ModBus RTU mode Protocol
Baud Rate: $2400,4800,9600,19200$ bps

1 Start bit, 8 Data bits, None Parity, 2 Stop bits

Measuring Range \& Accuracy		
Input signal	Maximum Range	Accuracy
Thermocouple J	-50 to $1000^{\circ} \mathrm{C}\left(-58\right.$ to $\left.1832^{\circ} \mathrm{F}\right)$	$\pm 1^{\circ} \mathrm{C}$
Thermocouple K	-50 to $1370^{\circ} \mathrm{C}\left(-58\right.$ to $\left.2498^{\circ} \mathrm{F}\right)$	$\pm 1^{\circ} \mathrm{C}$
Thermocouple T	-270 to $400^{\circ} \mathrm{C}\left(-454\right.$ to $\left.752^{\circ} \mathrm{F}\right)$	$\pm 1^{\circ} \mathrm{C}$
Thermocouple E	-50 to $750^{\circ} \mathrm{C}\left(-58\right.$ to $\left.1382^{\circ} \mathrm{F}\right)$	$\pm 1^{\circ} \mathrm{C}$
Thermocouple B	0 to $1800^{\circ} \mathrm{C}\left(32\right.$ to $\left.3272^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}(\mathrm{Note} 1)$
Thermocouple R	-50 to $1750^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3182^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$
Thermocouple S	-50 to $1750^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3182^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$
Thermocouple N	-50 to $1300^{\circ} \mathrm{C}\left(-58\right.$ to $\left.2372^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$
Thermocouple C	-50 to $1800^{\circ} \mathrm{C}\left(-58\right.$ to $\left.3272^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$
Pt100 (DiN)	-200 to $850^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1562^{\circ} \mathrm{F}\right)$	$\pm 0.2^{\circ} \mathrm{C}$
Pt100 (JIS)	-200 to $600^{\circ} \mathrm{C}\left(-328\right.$ to $\left.1112^{\circ} \mathrm{F}\right)$	$\pm 0.2^{\circ} \mathrm{C}$
mA	$-24 \mathrm{~mA} \sim 24 \mathrm{~mA}$	$\pm 4 \mu \mathrm{~A}$
mV	$-60 \mathrm{mV} \sim 60 \mathrm{mV}$	$\pm 0.01 \mathrm{mV}$
Voltage	$-10 \mathrm{~V} \sim 10 \mathrm{~V}$	$\pm 2 \mathrm{mV}$

${ }^{*}$ Factory Setting
Note 1: Accuracy is not guaranteed between 0 and $400^{\circ} \mathrm{C}\left(0\right.$ and $\left.752^{\circ} \mathrm{F}\right)$ for type B.

	Alarm Function
Alarm Function	No alarm
	Process high alarm
	Process low alarm
	Deviation high alarm
	Deviation low alarm
Inside deviation band alarm	
Alarm Mode	Outside deviation band alarm
	Normal mode
	Latch mode
	Standby and Latch mode

Dimension

- Outline

- Panel cut

(Unit/mm)

Wiring Diagram

DC power supply

$$
\begin{array}{|l|l|l|}
\hline 13 & 14 & 15 \\
\hline \text { TX+ TX- } \\
\text { RS485 }
\end{array}
$$ Control output 1 (can be converted to 2nd Alarm)

Alarm 1 output
(can be converted to 2nd output) $\quad 1 \quad \begin{aligned} & \text { Control output } 1 \text { (can be converted to } 2 \mathrm{nd} \\ & \text { Relay output: } 5 \mathrm{~A} / 240 \mathrm{Vac} \text { (Resistive load) }\end{aligned}$
(can be converted to 2nd output) $\{$ R1/C2
Relay output:
5A/240Vac (Resistive load)

Ordering Information

F4	\square
Input	Code
T/C	T
PT100 (RTD)	D
0-60mV DC	L
0-10V DC	V
0-24mA DC	M

Output 1 (Alarm2) Code Relay R SSR P 4~20mA M 0-10V V Other O Alarm 2 A	

